Extreme States of Matter in Strong Interaction Physics

By Helmut Satz

The thermodynamics of strongly interacting matter has become a profound and challenging area of modern physics, both in theory and in experiment. Statistical quantum chromodynamics, through analytical as well as numerical studies, provides the main theoretical tool, while in experiment, high-energy nuclear collisions are the key for extensive laboratory investigations. The field therefore straddles statistical, particle and nuclear physics, both conceptually and in the methods of investigation used. This course-tested primer addresses above all the many young scientists starting their scientific research in this field, providing them with a general, self-contained introduction that emphasizes in particular the basic concepts and ideas, with the aim of explaining why we do what we do. To achieve this goal, the present text concentrates mainly on equilibrium thermodynamics: first, the fundamental ideas of strong interaction thermodynamics are introduced and then the main concepts and methods used in the study of the physics of complex systems are summarized. Subsequently, simplified phenomenological pictures, leading to critical behavior in hadronic matter and to hadron-quark phase transitions are introduced, followed by elements of finite-temperature lattice QCD leading to the important results obtained in computer simulation...

Reviews

The best publication i ever study. It is really basic but unexpected situations within the fifty percent of your publication. Your lifestyle period is going to be enhance as soon as you total reading this article publication.
-- Ashton Kassulke

A top quality publication as well as the font utilized was fascinating to read. It is among the most incredible pdf i actually have read through. I am easily could get a pleasure of looking at a created publication.
-- Scot Howe